Size Dependent Cellular Uptake of Rod-like Bionanoparticles with Different Aspect Ratios
نویسندگان
چکیده
Understanding the cellular internalization mechanism of nanoparticles is essential to study their biological fate. Especially, due to the anisotropic properties, rod-like nanoparticles have attracted growing interest for the enhanced internalization efficiency with respect to spherical nanoparticles. Here, to elucidate the effect of aspect ratio of rod-like nanoparticles on cellular uptake, tobacco mosaic virus (TMV), a typical rod-like bionanoparticle, is developed as a model. Nanorods with different aspect ratios can be obtained by ultrasound treatment and sucrose density gradient centrifugation. By incubating with epithelial and endothelial cells, we found that the rod-like bionanoparticles with various aspect ratios had different internalization pathways in different cell lines: microtubules transport in HeLa and clathrin-mediated uptake in HUVEC for TMV4 and TMV8; caveolae-mediated pathway and microtubules transport in HeLa and HUVEC for TMV17. Differently from most nanoparticles, for all the three TMV nano-rods with different aspect ratios, macropinocytosis takes no effect on the internalization in both cell types. This work provides a fundamental understanding of the influence of aspect ratio on cellular uptake decoupled from charge and material composition.
منابع مشابه
Optimization of Bio-Nano Interface Using Gold Nanostructures as a Model Nanoparticle System
Better knowledge of interface between nanotechnology and biology will lead to advanced biomedical tools for imaging and therapeutics. In this review, recent progress in the understanding of how size, shape, and surface properties of nanoparticles (NPs) affect intracellular uptake, transport, and processing of NPs will be discussed. Gold NPs are used as a model system in this regard since their ...
متن کاملDeformation Mechanisms of Very Long Single-Wall Carbon Nanotubes Subject to Compressive Loading
We report atomistic studies of single-wall carbon nanotubes with very large aspect ratios subject to compressive loading. These long tubes display significantly different mechanical behavior than tubes with smaller aspect ratios. We distinguish three different classes of mechanical response to compressive loading. While the deformation mechanism is characterized by buckling of thin shells in na...
متن کاملEffect of Square Rod Aspect Ratio on Vortex Shedding Downstream the Rod and Heat Transfer Enhancement from the Neighboring Flat Plate
A rectangular rod is placed in a flow field flowing parallel to a flat plate. Effect of chord-thickness ratio of rectangular rod on developing vortex shedding downstream to the rod is studied. Then, for each one of the aspect ratios, the distance of the rod from the neighboring flat plate is reduced until the rod sticks to the flat plate. In each case, the effect of the flat plate boundary laye...
متن کاملEffect of Square Rod Aspect Ratio on Vortex Shedding Downstream the Rod and Heat Transfer Enhancement from the Neighboring Flat Plate
A rectangular rod is placed in a flow field flowing parallel to a flat plate. Effect of chord-thickness ratio of rectangular rod on developing vortex shedding downstream to the rod is studied. Then, for each one of the aspect ratios, the distance of the rod from the neighboring flat plate is reduced until the rod sticks to the flat plate. In each case, the effect of the flat plate boundary laye...
متن کاملSynthesis of well–dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains
In the present contribution, we describe the synthesis of highly dispersed silver nanorods (NRs) of different aspect ratios using a chemical route. The shape and size of the synthesized NRs were characterized by Transmission Electron Microscopy (TEM) and UV-visible spectroscopy. Longitudinal and transverse absorptions bands confirm the rod type structure. The experimentally recorded UV-visible ...
متن کامل